Pattern Recognition with Slow Feature Analysis

نویسنده

  • Pietro Berkes
چکیده

Slow feature analysis (SFA) is a new unsupervised algorithm to learn nonlinear functions that extract slowly varying signals out of the input data. In this paper we describe its application to pattern recognition. In this context in order to be slowly varying the functions learned by SFA need to respond similarly to the patterns belonging to the same class. We prove that, given input patterns belonging to C non-overlapping classes and a large enough function space, the optimal solution consists of C − 1 output signals that are constant for each individual class. As a consequence, their output provides a feature space suitable to perform classification with simple methods, such as Gaussian classifiers. We then show as an example the application of SFA to the MNIST handwritten digits database. The performance of SFA is comparable to that of other established algorithms. Finally, we suggest some possible extensions to the proposed method. Our approach is in particular attractive because for a given input signal and a fixed function space it has no parameters, it is easy to implement and apply, and it has low memory requirements and high speed during recognition. SFA finds the global solution (within the considered function space) in a single iteration without convergence issues. Moreover, the proposed method is completely problem-independent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

The Application of Numerical Analysis Techniques to Pattern Recognition of Helicopters by Area Method

In this paper, a new method to selecting different viewing angles feature vector is introduced to recognition different types of Helicopters. Feature vector 32 components based on characteristics of the shape, Area and a length to describe a binary two-dimensional image was created, shape feature and length feature not only effective but area features effective and were used. New features vecto...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature

Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps

Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005